Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3D Flexible Wing

AIAA 2001–1107
Clyde R. Gumbert – MDOB, NASA LaRC
Gene J. – W. Hou – Old Dominion University
Perry A. Newman – MDOB, NASA LaRC

AIAA 39th Aerospace Meeting and Exhibit Reno, Nevada January 8-11, 2001 http://fmad-www.larc.nasa.gov/mdob/MDOB

Motivation

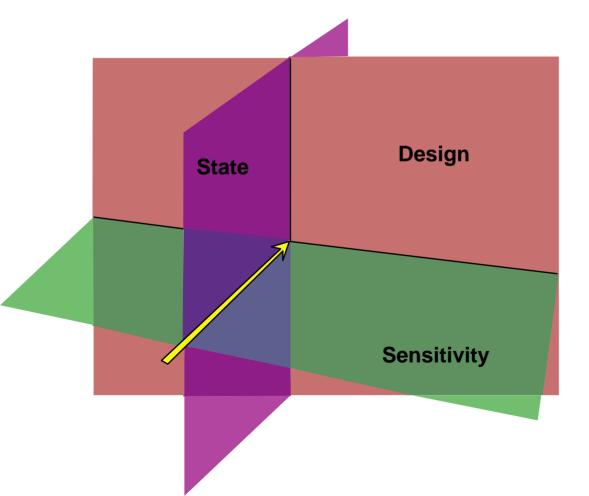
- Multidisciplinary Design Optimization with high fidelity (nonlinear) PDE analyses
 - Loosely coupled discipline interactions
 - Use validated legacy codes
 - Minimize implementation issues

Reduce computation cost from conventional optimization

Outline

- Conventional Approach
- Optimization Challenges
- SAADO Approach
- Process Implementation
- Application Problems
- Results
- Conclusions

Conventional Approach



 $\min_{\beta} F(Q,u,X,\beta)$

subject to constraints $g_i(Q,u,X,\beta) \le 0$, i=1,2,...m

 β design variables X computational mesh

 $Q(u,X,\beta)$ solutions of coupled $u(Q,X,\beta)$ aero-struct equations

g' solutions of coupled aerou' struct sensitivity equations

Optimization Challenges

Why SAADO?

- Minimize modifications to discipline analysis codes
- Reduce the cost incurred by well-converged, iterative function and sensitivity analyses at non-optimal points in design space

How SAADO?

- Interleaf optimization updates with iterative discipline and system analyses
- Require better convergence for function and sensitivity analyses as optimization progresses

Past SAADO

• Demonstrated for 1D, 2D, and 3D aerodynamic applications (single discipline)

Flexible 3D SAADO goals

- Results which agree with conventional optimization
- Computational cost less than conventional optimization

SAADO Approach

Partial convergence implies:

- Approximate functions (state) and gradients (sensitivities)
- Infeasibility in early design steps

$$R(Q, X) \neq 0$$

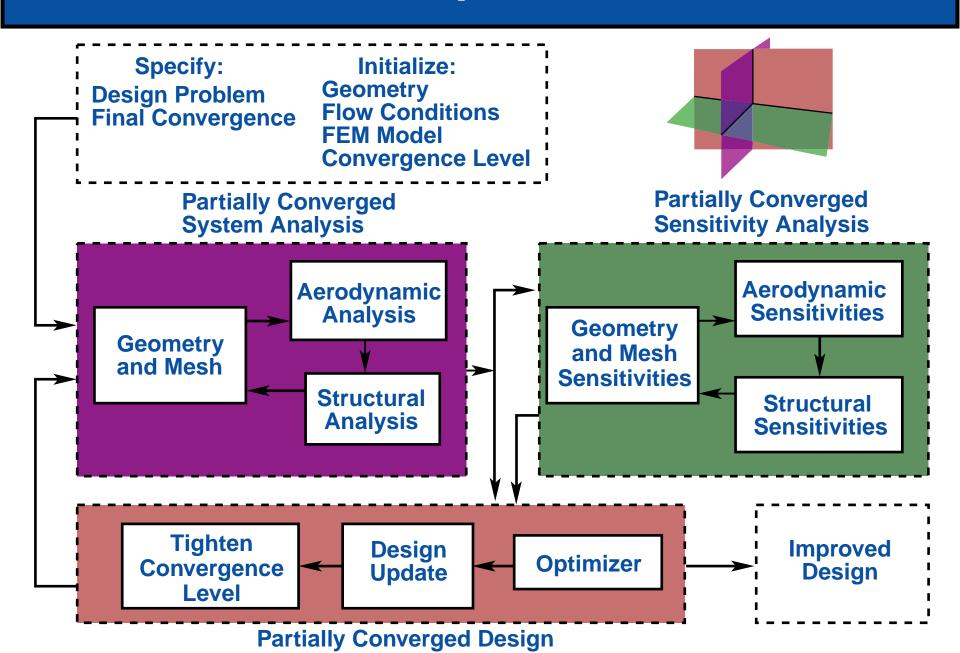
 $Ku - L \neq 0$

Contribution to reduction of design variable domain

$$R + \frac{\partial R}{\partial Q} \Delta Q + \frac{\partial R}{\partial X} (\Delta u) + \frac{\partial R}{\partial X} X' \Delta \beta = 0$$

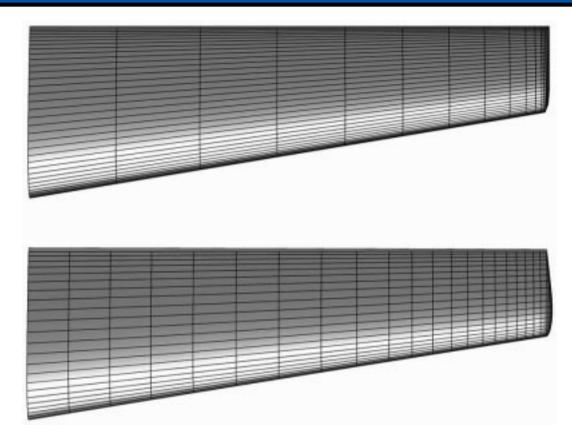
$$Ku - L - \frac{\partial L}{\partial Q} \Delta Q + (K - \frac{\partial L}{\partial X}) \Delta u + \left[\frac{\partial K}{\partial X} u - \frac{\partial L}{\partial X} \right] X' \Delta \beta = 0$$

Process Implementation

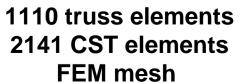


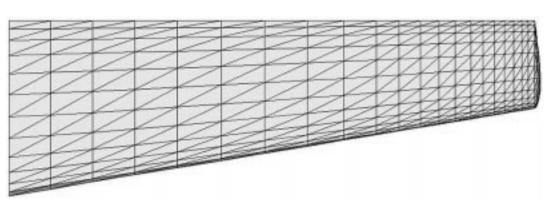
Process Implementation Computational Meshes

97x17x25 CFD mesh (rigid wing AIAA 99-3296)

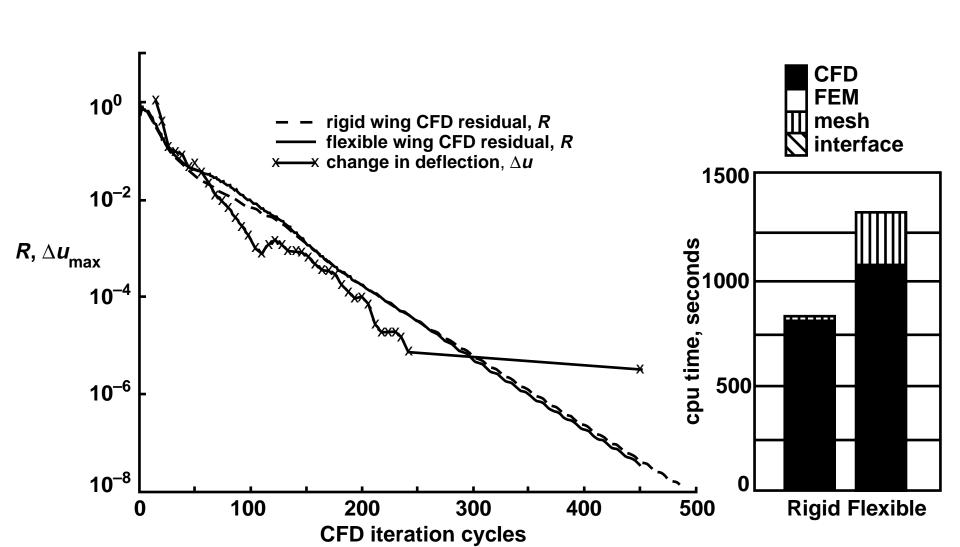


73x25x25 CFD mesh (flexible wing)

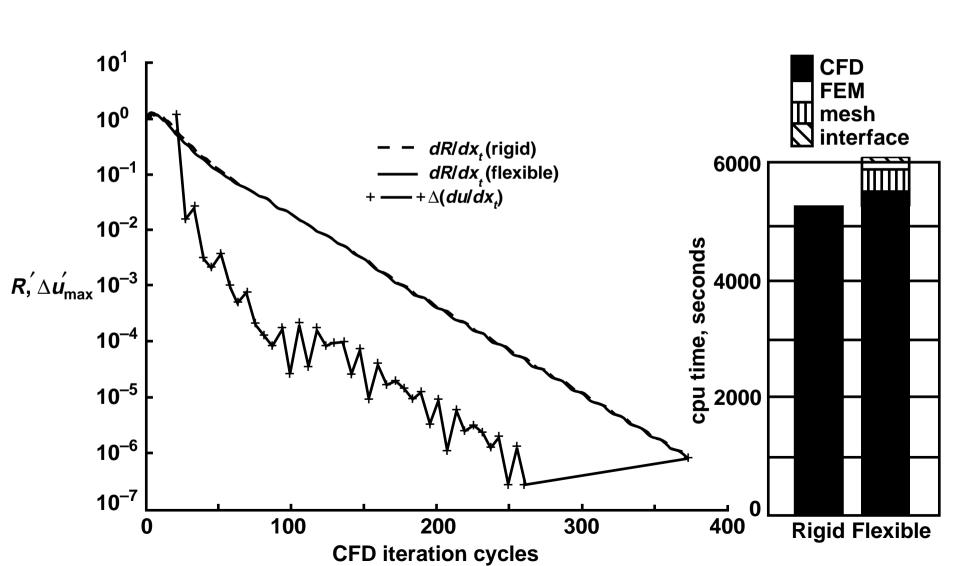




Process Implementation Aerodynamics / Structures Coupling



Process Implementation Aerodynamics / Structures Derivative Coupling



Application Problems Aerodynamic Shape Optimization of a 3D Flexible Wing

Objective function: negative lift to drag ratio, –L/D

		 4
	netra	ints:
,	113414	HILLO.

minimum payload:

• maximum compliance:

maximum bending moment:

maximum pitching moment:

• minimum leading edge radius:

"flexible"

 $C_L^* S^* q_\infty - W \ge L_{\min}$

 $\oint p u \cdot ds \leq P_{\min}$

 $C_m \le C_{m_{\max}}$

yes

"rigid"

 $C_L^* S \ge L_{\min}$

C₁ ≤ **C**₁ max

 $C_m \le C_{m_{\max}}$

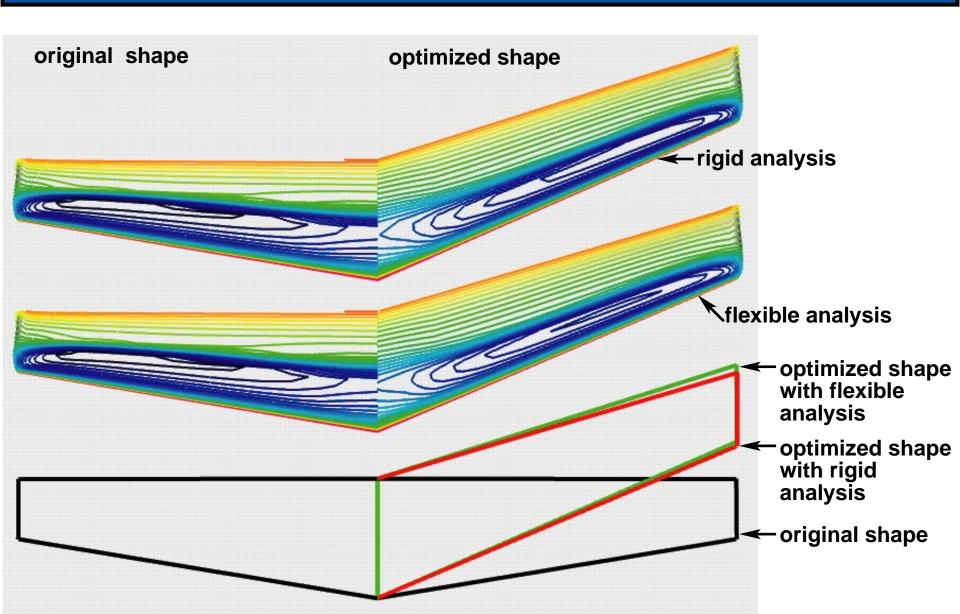
yes

Design variables: planform and section

Application Problems $M_{\infty} = 0.8$, $\alpha = 1^{\circ}$

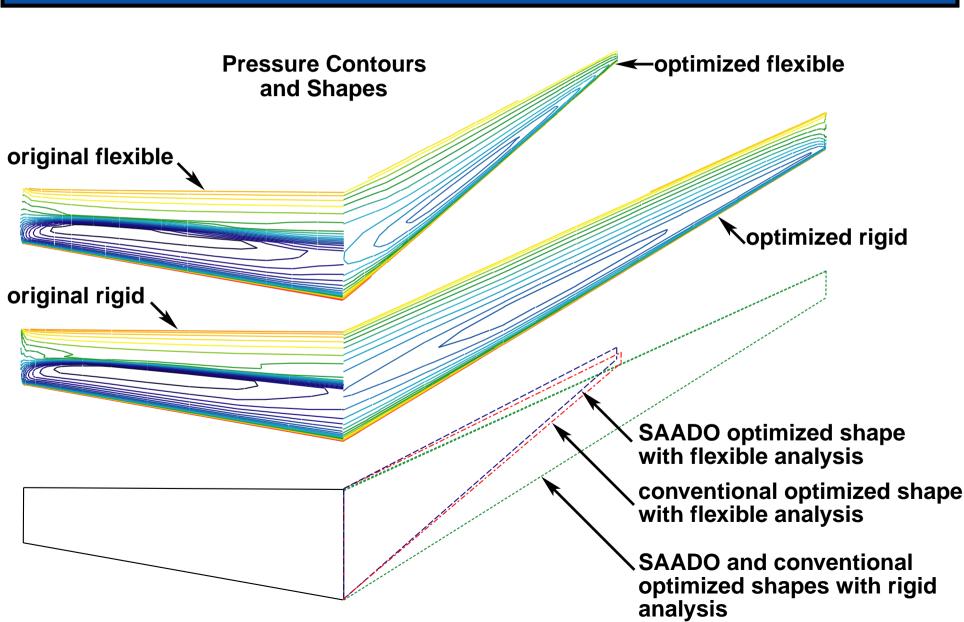
- Two planform design variable
 - Ensure comparable results with conventional approach
 - Rigid (from AIAA-99-3296)
- Eight-design-variable problems
 - Section variables and planform variables
 - Rigid (shown at AIAA 14th CFD Conference)

Two Design Variable Problems Design Results

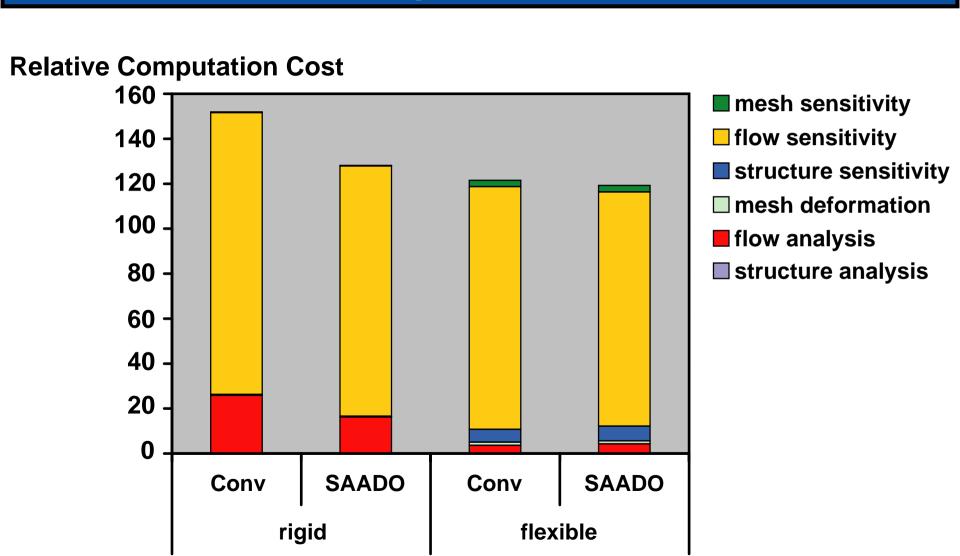


Eight-Design-Variable Problems

 $M_{\infty} = 0.8$, $\alpha = 1^{\circ}$



8-DV Optimization Problems Computation Cost



Conclusions

- Initial flexible 3D wing SAADO results obtained, demonstrating feasibility for dual simultaneity
- SAADO finds the same or similar local minimum as conventional optimization technique
- SAADO requires few modifications to the function and sensitivity analysis codes
- SAADO can be computationally more efficient than conventional techniques, but may be problem dependent
- Gradient computation times dominate SAADO

Open Questions

- Gradient cost
 - adjoint approach for loosely coupled analyses?
 - code (compiler) optimization for AD code?
 - other approximations or methods?

Optimizer control

Sensitivity analyses error control

http://fmad-www.larc.nasa.gov/mdob/MDOB